
 Programming Exercise 3 : scan conversion of polygon

 copyright by hongwei dong (hwdong.com)

Introduction

 In this exercise, you will implement the sweep line algorithm for scan

conversion of polygons. Before starting on this programming exercise, we strongly

recommend watching the lectures.

 To get started with the exercise, you will need to download the starter codes.

There is a skeleton file "ScanPolygon.cpp" which provided all nessary code for you

to start, you just need to finish the function scanPolygon() to scan conversion of a

polygon .

 We implemented a simple code called scanRectange() for scan conversion of

rectange to warm you up for the concept of scan conversion of polygon. Your task is

to implement weep line algorithm for scan conversion of polygons in the function

scanPolygon().

 To run these programs ,the glut enviroment should be setup.You can get the glut

from glut-3.7.6-bin.zip (117 KB)(http://user.xmission.com/~nate/glut/glut-3.7.6-bin.zip) ,unzip it

and copy three files to different locations on your window as following:

� glut.h – This is the file you’ll have to include in your source code. The

common place to put this file is in the gl folder which should be inside the

include folder of your system. for example ,your vc2010 include folder

"c:\program files\Microsoft Visual Studio 10.0\VC\include\gl"

or "c:\program files(x86)\Microsoft Visual Studio 10.0\VC\include\gl"

in(my conputer

� glut32.lib (Windows version) – This file must be linked to your

application so make sure to put it your lib folder. example ,your vc2010

lib folder

 "c:\program files\Microsoft Visual Studio 10.0\VC\lib"

or "c:\program files(x86)\Microsoft Visual Studio 10.0\VC\lib" in(my

conputer

� glut32.dll (Windows) – You could place the dll file in your exe’s

folder.for example,the sustem folder:

"c:\windows\system32" or "c:\windows\sysWOW64" in my conputer

Scan conversion of Rectanges

 The scan conversion of rectanges is simple (see figure 1.a)): we just need to set
pixels bounded by left ,right,bottom and top edge of the rectange with given color.The

code is as following:

 for(int y = y0;y<y1;y++)

 for(int x = x0;x<x1;x++)

 setpixel(x,y,R,G,B);

 When you run the starter code " ScanPolygon.cpp " ,the scanRectange

 is invoked in the dispaly function display() to fill a rectange from (20,10) to

(200,400) and the result will be similar to figure 1.b).

 a) fill pixels in a rectange b) a rectange from (20,10) to (200,400)

 figure 1 scan conversion of rectanges

 Please note that the origin of the screen coordinate frame is located on the top

left.

Scan conversion of Polygons

 Your task in this programming exercise is to finish the sweep line scan
conversion of a polygon in the function scanPolygon() .

 For each sweep line intersecting with the polygon,the sweep line scan conversion

algorithm find all intersectiong point of the edges of the polyong and the sweep line

and sort these interstion points to get the segment of the sweep line lying in the

polygon and fill these segments with given color.For example,infigure 2,the y=2

sweep line intersecting with the polygon has two segments lying in the polygon.

 figure2 Sweep line algorithm for scan conversion of polygons

 A data structure called "Edge" is used to represent an edge of a polygon which

stores its y-coordinate of its up vertex,the x

current sweep line and the

 typedef struct {

 int maxY;

 float currentX,xInc;

 } Edge;

 The sweep line use a data structure called "Edge Table" to store all non

horizontal edges of the polygon

sweep line are put into a single edge

to represent the "Edge Table" (see figure 2):

 typedef vector<Edge> EdgeList;

 vector< EdgeList >

 A variable called "Active Edge List" to store all edge intersecting with the current

sweep line.

 EdgeList activeEdgeList;

 The sweep line scan conversion algorithm could be describe as following:

 line y = 0

 While (y < height)

 Add edges to Act

 Remove edges that end at line

 Fill pixels

 Increment x-values on edges in Active Edge List

 Increment line y

 We have implemented

some code for you to implement. For example,you should implement "

x-values on edges in Active Edge List

from sweep line y to sweep line y+1 as following (see figure 3):

 x = x+ 1/m; //where m is the slope of the edge line.

 figure 3 incremental evaluate the x

 We use a helper function

vertices of a polygon in the

should uncommet the " intputPolygon(polygon);

example ,if you input a polygon like the figure 4.left), you will see the conversed

tructure called "Edge" is used to represent an edge of a polygon which

coordinate of its up vertex,the x-coordinate of the intersect point with

current sweep line and the reciprocal of ite slope:

currentX,xInc;

The sweep line use a data structure called "Edge Table" to store all non

edges of the polygon and edges with their lower vertices lying on the same

a single edge list in the "Edge Table". You can use the vector

represent the "Edge Table" (see figure 2):

vector<Edge> EdgeList;

dgeList > edgeTable; //store all non- horizontal edges

called "Active Edge List" to store all edge intersecting with the current

EdgeList activeEdgeList;

The sweep line scan conversion algorithm could be describe as following:

< height)

Add edges to Active Edge List from Sorted Edge Table starting at

Remove edges that end at line

values on edges in Active Edge List

line y

ed some code for you in the ScanPolygon() function and left

some code for you to implement. For example,you should implement "

values on edges in Active Edge List " to update the x-coordinates of intersection points

from sweep line y to sweep line y+1 as following (see figure 3):

//where m is the slope of the edge line.

figure 3 incremental evaluate the x-coordinate of the intersection points

We use a helper function intputPolygon () to help you input the coordinates of

vertices of a polygon in the main() function. After you finished the ScanPolygon

intputPolygon(polygon);" to set the vertices of a polygon.

example ,if you input a polygon like the figure 4.left), you will see the conversed

tructure called "Edge" is used to represent an edge of a polygon which

coordinate of the intersect point with

The sweep line use a data structure called "Edge Table" to store all non-

and edges with their lower vertices lying on the same

the "Edge Table". You can use the vector

called "Active Edge List" to store all edge intersecting with the current

The sweep line scan conversion algorithm could be describe as following:

Table starting at line y

function and left

 Increment

coordinates of intersection points

coordinate of the intersection points

to help you input the coordinates of

ScanPolygon(),you

vertices of a polygon. For

example ,if you input a polygon like the figure 4.left), you will see the conversed

polygon on the scree like the figure 4.right).

 figure 4 input polygon and scan conversion of it.

 Please note that the origin of the screen coordinate frame is located on the top

left.

 All parts of this programming exercise are due 2012/10/24 PM at 23:59

