
 Programming Exercise 2 : scan conversion of lines

 copyright by hongwei dong (hwdong.com)

Introduction

 In this exercise, you will implement two algorithms for scan conversion of lines:

DDA (Digital differential analyzer) and MidLine algorithm. Before starting on this

programming exercise, we strongly recommend watching the lectures and glut

tutorial.

 To get started with the exercise, you will need to download the starter codes.

There is a skeleton file "ScanLine.cpp" which provided all nessary code for you to

start, you just need to finish the function DDAline() and Midpointline() to scan

conversion of line with any slope.

 We implemented the code partly for Midpointline() to draw a line with slope

between 0 and 1. You must modify the code in this function to make it workable for

lines with negative slope or slope larger than 1.

 To run these programs ,the glut enviroment should be setup.You can get the glut

from glut-3.7.6-bin.zip (117 KB)(http://user.xmission.com/~nate/glut/glut-3.7.6-bin.zip) ,unzip it

and copy three files to different locations on your window as following:

� glut.h – This is the file you’ll have to include in your source code. The

common place to put this file is in the gl folder which should be inside the

include folder of your system. for example ,your vc2010 include folder

"c:\program files\Microsoft Visual Studio 10.0\VC\include\gl"

or "c:\program files(x86)\Microsoft Visual Studio 10.0\VC\include\gl"

in(my conputer

� glut32.lib (Windows version) – This file must be linked to your

application so make sure to put it your lib folder. example ,your vc2010

lib folder

 "c:\program files\Microsoft Visual Studio 10.0\VC\lib"

or "c:\program files(x86)\Microsoft Visual Studio 10.0\VC\lib" in(my

conputer

� glut32.dll (Windows) – You could place the dll file in your exe’s

folder.for example,the sustem folder:

"c:\windows\system32" or "c:\windows\sysWOW64" in my conputer

Scan conversion of lines

 You could run the starter code " ScanLine.cpp " firstly and see the result as
following(figure 1):

 figure 1 a line from (20,10) to (200,400)

 Please note that the origin of the screen coordinate frame is located on the top

left.
 Start a line from (xL, yL) to (xH, yH) with "xL< xH" and the slope m of the
line is between 0 and 1, The DDA algorithm works as following:

 float x = xL ; y = yL;

 for (i = 0; i <= xH-xL; i++)

 DrawPixel (x, Round (y))

 x = x+ 1;

 y = y+m ;

 The Round (y) is a helper cunction to find the integer nearest to the real number

y. For example

 std::cout <<round(1.57) <<" "<< round(1.49) ;

 the code will output :

 2 1

 The DDA algorithm start from the start point and incremently calculate the

intersection of the line with row grid line or column grid line of pixel screen and draw

the pixel nearest to the intersection point (figure 2).

 figure 2 DDA scan conversion of line

 For lines with slope less than or equal

compute successive y values as

 For lines with slope greater than 1, we reverse the role of x and y i.e. we sample at

dy=1 and calculate consecutive x values as

 So the DDA code could be as following:

void DDAline(int x1,int

 float dX,dY,iSteps;

 float xInc,yInc,iCount,x,y;

 dX = x2 - x1;

 dY = y2 - y1;

 if (fabs(dX) > fabs(dY))

 iSteps = fabs(dX);

 else

 iSteps = fabs(dY);

 xInc = dX/iSteps;

 yInc = dY/iSteps;

 x = x1; y = y1;

 setpixel(x,y,R,G,B);

 for (iCount=1; iCount<=iSteps; iCount++) {

 // you should fill the code here

 }

 setpixel(x,y,R,G,B);

 return;

}

 Your first task is to finish the code above and make it run to draw lines with any

slope.

 Your second task is: do the similar modification to code in

draw lines with any slope.

less than or equal to 1 sample at unit x intervals (dx=1) and

compute successive y values as

For lines with slope greater than 1, we reverse the role of x and y i.e. we sample at

dy=1 and calculate consecutive x values as

So the DDA code could be as following:

 y1,int x2,int y2,float R, float G, float B){

xInc,yInc,iCount,x,y;

(fabs(dX) > fabs(dY))

iSteps = fabs(dX);

iSteps = fabs(dY);

setpixel(x,y,R,G,B);

(iCount=1; iCount<=iSteps; iCount++) {

// you should fill the code here

setpixel(x,y,R,G,B);

task is to finish the code above and make it run to draw lines with any

is: do the similar modification to code in MidLine() so that to

draw lines with any slope.

sample at unit x intervals (dx=1) and

For lines with slope greater than 1, we reverse the role of x and y i.e. we sample at

task is to finish the code above and make it run to draw lines with any

MidLine() so that to

